
A Preselection Algorithm for the Influence Maximization
Problem in Power Law Graphs

Renato S. Melo
Federal University of Paraná

Curitiba, Paraná, Brazil
rsmelo@inf.ufpr.br

Andre L. Vignatti
Federal University of Paraná

Curitiba, Paraná, Brazil
vignatti@ufpr.br

ABSTRACT

The influence maximization problem in social networks seeks out a
set of nodes that allows spreading information to the greatest num-
ber ofmembers. A greedy algorithm, proposed byKempe et al. [12],
finds a solution in which the spread of influence is at least 1− 1

e
of

the optimum. However, some shortcomings of this approach neg-
atively affect the run time of this algorithm. In this work, we pro-
pose a methodology to speedup the Kempe’s algorithm with focus
on power law graphs. The improvement consists of choosing the
most promising nodes in advance. To this end, we explore some
properties of power law graphs and the relationship between so-
cial influence and degree distribution. We have verified by exper-
imental analysis that this preselection reduces the run time while
preserving the quality of the solution.

CCS CONCEPTS

• Theory of computation→ Social networks; • Applied com-

puting → Law, social and behavioral sciences;

KEYWORDS

Influence maximization; Social networks; Power law graphs

ACM Reference Format:

Renato S. Melo and Andre L. Vignatti. 2018. A Preselection Algorithm for
the Influence Maximization Problem in Power Law Graphs. In SAC 2018:

SAC 2018: Symposium on Applied Computing , April 9–13, 2018, Pau, France.

ACM,NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3167132.3167322

1 INTRODUCTION

In social networks, the phenomenon of diffusion of ideas, behav-
iors and innovations has the property of always beginning with a
small group of early adopters [13]. From this group, more and more
people adopt the same behavior by observing that their friends,
neighbors or colleagues have already done so. So an information
spreads like an epidemic. A problem arising from the investigation
of this type of social influence is the influencemaximization, which
appears in the context of a chain adoption of new behaviors [7]. In-
formally, the influence maximization problem aims to find a set S
of fixed size, such that the influence of S is the largest possible. Our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167322

preselection heuristic intends to find a subset of vertices, called set
of candidates, in which we can select all the early adopters without
losing quality of spread. Thus, it is not necessary to explore every
vertex of the graph during the search for the most influential ones.

The influence maximization problem depends on theoreticalmod-
els for the formal definition, the basicmodels for information spread-
ing are Linear Threshold (LT) and Independent Cascade (IC) [12],
and in this work we consider the IC model. Let us consider a social
network as a graph G = (V ,E), where V is the set of individuals
and E is the set of relationships between these individuals. As is
done in [12, 13], the behaviors modeled here are progressive, that
is, each vertex can assume one of two states, active or inactive, and
can change from inactive to active, but not from active to inactive.
At time t = 0, a subset S ofV is chosen as the set of early adopters.
When a vertex v becomes active because of S , we say that v has
been influenced by S . From now onward we only consider directed
graphs, such that for two nodes v andw the influence of v tow is
different from the influence ofw tov . So in the IC model each edge
has an activation probability and the influence spreads through
active vertices. Each active vertex can activate independently its
inactive neighbors based on the probability at the edges [4]. The
adoption process starts from a set S of active nodes and unfolds
into discrete time steps. When the vertex v becomes active in step
t , it has a chance to activate each inactive neighborw , with a prob-
ability pv,w of success. If v succeeds, w is activated in step t + 1,
but if v fails it cannot try to activatew in subsequent rounds [12].

Problem 1. Given a directed weighted graph G = (V ,E), an influ-

ence modelm and an integer 1 ≤ k ≤ |V |. Find a subset S∗ ⊆ V such

that σm (S
∗) = max

S⊆V
{σm (S)} subject to |S | = k .

The function σm : 2V → R to be maximized is called influence

function, wherem is an influence model, such as IC and LT. Thus,
given a set S ⊆ V of early adopters, σm (S) denotes the expected
number of active vertices at the end of the activation process start-
ing from S [9, 12, 13]. Therefore, the Problem 1 defines the influ-
ence maximization problem. This problem is NP-hard both as IC to
LT models [12]. To get an approximation guarantee, Kempe et al.
[12] have shown that the σ function is submodular and monotone
for IC and LT. Due to these properties, a greedy algorithm that
iteratively chooses the vertex with greatest marginal gain can be
good enough. The Algorithm 1 shows the pseudo code. However,
two major sources of inefficiency affect this algorithm. First, the
processing time of σm (S) function is too high, since to get the ex-
act value of σ is a #P-hard problem on LT and IC models [3, 5, 12].
Second, the algorithm makes many calls to σ .

https://doi.org/10.1145/3167132.3167322
https://doi.org/10.1145/3167132.3167322

SAC 2018, April 9–13, 2018, Pau, France Renato S. Melo and Andre L. Vigna�i

Algorithm 1: Greedy

Input:G = (V , E),k ∈ N,σm
Output: Seed set S

1 begin

2 S = ∅

3 while |S | ≤ k do

4 u = argmaxw ∈V \S {σm (S ∪ {w}) − σm (S)}

5 S ← S ∪ {u}

RelatedWork:To overcome the inefficiency of theAlgorithm1,
several works propose improvements and reduction of the compu-
tational cost. Two algorithms, Celf [14] and Celf++ [10], stand
out for providing good results using Monte Carlo simulations. The
main idea of the Celf algorithm is that the marginal gain of a ver-
tex at a given iteration can not be greater than its gain in the previ-
ous iterations. The algorithm maintains a list of vertices sorted by
the marginal gain in a non-increasing order. Celf++ proposes new
settings to Celf. The central idea is that, if the last selected vertex
is still the first on the sorted list, then the marginal gain of such
vertex does not need to be recomputed. Arora et al. [2] explains
that besides the Monte Carlo based methods, there are well-known
heuristics that use amethod called Score Estimation to deal with the
influence function, for instance Simpath [11] and Ldag [5]. More-
over, recent studies show good results using a technique known
as Reverse Reachable sets [2], which has provided algorithms as
efficient as the heuristics, but with the plus of having approxima-
tion factor guarantee, for example TIM+ [18] and IMM [17]. We
can think of algorithms for the influence maximization problem
as having two phases, (i) the influence function estimation and (ii)
the seed selection, where Monte Carlo simulations, Score Estima-
tion and Reverse Reachable techniques address the first one. In this
work, we use a preselection strategy in order to improve the per-
formance of the algorithms that deal with the second phase.

While most of the studies focus on proposing algorithm to find
the set of early adopters or to estimate the influence function, for
instance [3, 4, 9–11, 14, 17, 18], we try to take advantage of know-
ing the topology of most of the large scale social networks, which
follows a power law degree distribution. In such networks there
are few vertices with a large number of neighbors, called hubs,
and many with low degree [6, 8, 15]. Liu et al. [15] shows that
only a few out-neighbors of the hubs have considerable influence,
while many of these neighbors contribute little to the marginal
gain. These findings suggest that there is a relation between the
degree distribution and the reach of an information that spreads
along the network. We explore these findings to recognize and rule
out the less probable influencer nodes.

In summary, the contribution of the paper is twofold. An effi-
cient heuristic to select the more promising vertices and, as an ap-
plication of such strategy, we present an algorithm to select the
early adopters in power law graphs. The main contribution is the
Preselector algorithmwhich chooses a subset of the vertices based
on its degree, where the objective is to decrease the number of
evaluated vertices by the greedy algorithm. Such strategy allied
with the Celf optimization lead us to the second contribution, the

PrevalentSeed, that makes less calls to the σ function. Experi-
mentally, this approach reduces up to 57% the Celf’s run time.

The rest of the paper is organized as follows. Initially, we in-
troduce the algorithm to select the most promising vertices to be-
come early adopters. Then we show some theoretical analysis that
have been carried out on run time and quality results. Next, we
present the algorithm that chooses the early adopters using the
preselection combined to a lazy forward update scheme. Lastly, in
the experiments section, some observations are described about
the empirical results achieved on real world power law graphs.

2 OPTIMIZATION BY PRESELECTION

Instead of computing the marginal gain over the whole set of ver-
tices at each iteration to select those of greatest marginal gain, we
only travel a subset of nodes. This subset will be called set of can-

didates, and it is selected by a heuristic (Algorithm 2) in advance.
In order to reduce the number of calls to σ , we discard the nodes
that may have small marginal gain before processing them in fact.
Thus, we compute the marginal gain only for the more promising
nodes, so we avoid multiple calls to the σ ’s estimation by choos-
ing correctly such nodes. Our strategy to select the candidates is
fundamentally based on the following criteria. We assume that a
vertex will not have high marginal gain if their out-neighbors al-
ready can be influenced by a node of higher degree. So the search
chooses nodes that can cover the greatest number of non-covered
nodes. A vertex is covered when it has at least one in-neighbor
that already was chosen as candidate in the iterative process. The
procedure stops when there are no more uncovered vertices.

2.1 Set of Candidates

The set of candidates, selected by Algorithm 2, is defined asC ⊆ V .
Initially, C = ∅, and nodes are added iteratively during the execu-
tion of the algorithm. For everyv ∈ V , the set of out-neighbors ofv
is denoted byOut(v) = {w ∈ V such that (v,w) ∈ E}. Similarly, the
out-neighborhood of the set C is denoted as Out(C) = {(u,v) ∈ E
such that u ∈ C and v < C}. To simplify the pseudo-code, we de-
note by D = C ∪Out(C) the set of vertices covered by C .

Algorithm 2: Preselector

Input:G = (V ,E)

Output: Set C of candidates
1 begin

2 Sort the vertices v1,v2, ...,v |V | in decreasing order by
out-degree

3 C ← ∅;D ← ∅

4 for i ← 1 to |V | do
5 if Out(vi) * D and Out(vi) , ∅ then

6 C ← C ∪ {vi }

7 D ← D ∪ {vi } ∪Out(vi)

In Algorithm 2, each node vi is selected as candidate when it
has at least one out-neighbor that is still uncovered. Theorem 2.1
determines an upper bound for the Preselector’s run time.

A Preselection Algorithm for the Influence Maximization Problem in Power Law Graphs SAC 2018, April 9–13, 2018, Pau, France

Theorem 2.1. LetG be a directed graph with n vertices andm edges.

Algorithm 2 ends in O(n +m) steps.

Proof. At the first line, if we use an efficient algorithm like the
counting sort to sort the vertices, this task will be performed in
linear time on the number of vertices. We can use this algorithm
because the out-degrees of the nodes are values from 1 to n − 1.
After, in the loop of the lines 4-7, the trickiest operation is the con-
dition that depends on whether the set D contains Out(vi), for all
vi ∈ V . We can verify such condition in constant time using a hash
table to store the elements ofD. Thus, let δ+(vi) be the out-degree
of vi . No more than δ+(vi) · O(1) steps are needed to check each
vi . Thus, directly by the “Handshake” lemma, the loop demands∑
vi ∈V δ+(vi) = O(m) comparisons. Finally, the total time for pre-

selection isO(n)+O(m) = O(n +m), whereO(n) is the time to sort
the list of vertices. �

2.2 Analysis of the Preselection Process

The preselection process is biased in favor of nodes of high degree,
since it consists in discarding nodes in which all its out-neighbors
are covered by higher-degree vertices. So we want to show that
when a vertex v does not belong toC after preselection, v tends to
have a low marginal gain in comparison to the selected nodes. By
this way, we can avoid unnecessary computation, for the marginal
gain of v , during the greedy search for the k nodes of the highest
marginal gain. For this purposewe use three results to argue about.
First, for each vertex v in which all its out-neighbors are already
candidates, we can activate v plus Out(v) in order to improve the
spread of active nodes. But, in number of activated nodes, activate
v has the same effect of activating onlyOut(v). For this reason, it is
not needed to activatev since only its neighbors are sufficient. The
Lemma 2.2 provides a demonstration of this statement. Second, if
all the out-neighbors of a vertex v are covered by the set of candi-
dates, putting v together with C as active nodes can increase the
probabilities of such neighbors being activated, but such increase
is low and limited. Thereby, as shown in Lemma 2.3, v can be left
aside. The last result obtained from this analysis is the Theorem
2.4, which says that for each v < C , the set C has the possibility of
activate all the nodes that v would activate.

To analyze the quality of the Preselector’s output, we have to
assume some simplifications. First, we consider the IC model with
activation probabilities p equals on each edge. Second, to make
some calculus, we use a more simple influence function called di-

rect influence instead of σ itself. Not making these simplifications
implies in compute the exact value of σ , which is not the goal of
this analysis, since to get this value is a #P-hard problem. The Def-
initions 1 and 2 describe the concept of direct influence.

Definition 1 (Direct influence of a vertex). Let v be an ac-

tive vertex. We call direct influence ofv the number inf(v) of vertices

in Out(v) activated by v .

Definition 2 (Direct influence of a set). Let A be a set of

active nodes. We denote inf(A) the direct influence of A, the number

of nodes in Out(A) activated by vertices in A.

In this way, note that for all v ∈ V , each w ∈ Out(v) becomes
active with probability p so inf(v) is a random variable. Thus, at

every execution of the activation process, inf(v) can assume a dif-
ferent value between zero and |Out(v)|. The same happens with
inf(A). Therefore, we can use expectation on the following results.

In the Algorithm 2, notice that a vertex v will not become a
candidate if all its out-neighbors are covered by the setC , at line 5.
This can happen in two different ways: (i) eitherOut(v) ⊆ C , or (ii)
the out-neighbors of v are covered but not allw ∈ Out(v) belongs
to C . Lemmas 2.2 and 2.3 address these cases respectively.

Lemma 2.2. Let vi be a vertex at the i-th iteration of the Algo-

rithm 2. If Out(vi) ⊆ C , then the additional influence that vi could

yield for the setC is either null or negative, that is, E[inf(C ∪ {vi })]−
E[inf(C)] ≤ 0.

Proof. To validate the inequality of the lemma, we need to
know the value of inf(C). Knowing that the set C has at least one
edge to each w ∈ Out(C), the reasoning is as follows. To find the
number of vertices that can be directly activated by C , consider a
random variable Yw which is 1 ifw was activated by a vertex in C ,
and 0 otherwise. Thus,

inf(C) =
∑

w ∈Out (C)

Yw .

By the linearity of expectation and the definition of Yw as binary
variable, the expected value of inf(C) is

E[inf(C)] =
∑

w ∈Out (C)

E[Yw] =
∑

w ∈Out (C)

Pr(Yw = 1). (1)

Suppose now that we have added vi to C in order to increase
inf(C). To determine the effect of this change in the activation prob-
abilities, we need to consider whether vi was in the neighborhood
of C before becoming a candidate. In the negative case, that is, if
vi < Out(C), it is simple to visualize that includingvi inC does not
increase the value of inf(C), once vi has no neighbor outside of C ,
no edge will be added to the sum of the probabilities on the Eq. 1,
that is, E[inf(C ∪ {vi })] = E[inf(C)]. In an activation process in
which the setC is active, all the out-neighbors ofvi would already
be activated, and then vi would not activate another vertex. How-
ever, ifvi ∈ Out(C), things can be different because adding vi toC
reduces one element of Out(C), then the value of inf(C) cannot be
larger than |Out(C)| − 1. Hence, at least one edge is removed from
the sum of the Eq. 1. Then we have

E[inf(C ∪ {vi })] =
∑

w ∈Out (C)\{vi }

Pr(Yw = 1) < E[inf(C)].

Given these two possibilities, we finally have that E[inf(C ∪
{vi })] ≤ E[inf(C)]. �

We saw that the vertices in which all its out-neighbors are can-
didates do not improve the direct influence ofC . Nowwe can think
about the vertices that have out-neighbors covered, that is, it share
all the out-neighborswith the set of candidates, but such neighbors
can be both in C and Out(C). In this case, the Lemma 2.3 gives us
an upper bound to the additional direct influence that this type of
vertex can provide to the set of candidates.

Lemma 2.3. Let vi be a vertex at the i-th iteration of the Algo-

rithm 2. Denoting as G(C,vi) the additional influence provided by

adding vi in C . If Out(vi) ⊆ D, but Out(vi) is not fully in C , then

G(C,vi) ≤
1
4 |Out(vi) \C |.

SAC 2018, April 9–13, 2018, Pau, France Renato S. Melo and Andre L. Vigna�i

Proof. Whereas the set Out(vi) is not fully contained in C but
belongs to D, vi should stay in V \ C . However, if we add vi to C
in order to increase inf(C), as in Lemma 2.2, we have to consider
two possible situations: (i) vi ∈ Out(C), and (ii) vi < Out(C). Un-
like the Lemma 2.2, now in both cases (i) and (ii) the probabilities
will change and increase the direct influence ofC . This happens be-
cause the number of edges incident toOut(C) increases, and so the
probability of such vertices becoming active increases. We want to
find an upper bound for this probability growth.

Given a vertex w ∈ Out(vi) \ C , this vertex can be directly ac-
tivated by the vertices in C , and we can obtain the probability of
C activate w directly as follows. Let A be the event in which w is
activated byC . Remembering that p is the activation probability in
the independent cascade model, we have Pr(A) ≥ p, that is, the set
C has at least one edge tow . Includingvi inC ,w could be activated
byC and by vi . Thus, let B be the event in whichw is activated by
vi , then Pr(B) = p and the probability of the set C ∪ {vi } activate
w can be obtained with the equation

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A) · Pr(B) = Pr(A) + p − Pr(A) · p.

Here we apply the principle of inclusion and exclusion in the sum
of the activation probability. The first equality occurs due to the
independence between the events A and B.

The increase supplied by vi on the probability of C activate w
is the difference between Pr(A ∪ B) and Pr(A). Note that Pr(A) is
equivalent to Pr(Yw = 1) in the Eq. 1. Thus, let E[infw (C)] be
the expected direct influence of C on w . By the Eq. 1, we have
E[infw (C)] = Pr(Yw = 1) = Pr(A), similarly, Pr(A∪B) = E[infw (C∪
{vi })]. Let Gw (C,vi) be the additional influence provided byvi on
the probability of C activatew . The value of Gw (C,vi) is given by
the following equation

Gw (C,vi) = E[infw (C ∪ {vi })] − E[infw (C)]

= Pr(A ∪ B) − Pr(A)

= Pr(A) + p − Pr(A) · p − Pr(A)

= p − Pr(A) · p

= p(1 − Pr(A))

≤ p(1 − p),

where the inequality holds because Pr(A) ≥ p. This holds for any
w ∈ Out(vi) \C . Consequently, we need to apply the same differ-
ence for all vertices inOut(vi) \C . The increase of direct influence
led us to a quadratic function that represents a parabola upside-
down, such that the max value is 1

4 , when p =
1
2 . In consequence,

G(C,vi) =
∏

w ∈Out (vi)\C

Gw (C,vi)

≤
∏

w ∈Out (vi)\C

p(1 − p)

≤
∏

w ∈Out (vi)\C

1

4

=

1

4
· |Out(vi) \C |.

As the final point, the value of Gw (C,vi) is mutually independent
for each w ∈ Out(vi) \ C , then we can take the product over all
results. �

As shown above, selecting as candidate a vertex vi such that
Out(vi) ⊆ D, provides a negligible additional influence. Addition-
ally, the Theorem 2.4 brings up that at the end of preselection any
vertex ruled out has less influence on its neighbors than the set C .

Theorem2.4. Let infOut (v)(C) be the direct influence ofC onOut(v),

where v ∈ V . At the end of the Algorithm 2, we have E[inf(v)] ≤
E[infOut (v)(C)], for all v ∈ V \C .

Proof. By the Algorithm 2, if v ∈ V \ C then all w ∈ Out(v)

should be in D. We want to compare the v’s influence with C’s
influence on Out(v). To this end, we need to consider just the ver-
tices in Out(v) \ C . Thus, when w ∈ Out(C), besides receiving an
edge of v , w also receives at least one edge from C . Let Xv,w be a
binary random variable, which is 1 ifv activatesw and 0 otherwise.
We can get the value of inf(v) by the equation

inf(v) =
∑

w ∈Out (v)\C

Xv,w .

Using the linearity of expectation, we have

E[inf(v)] =
∑

w ∈Out (v)\C

E[Xv,w]

=

∑

w ∈Out (v)\C

Pr(Xv,w = 1)

=

∑

w ∈Out (v)\C

p. (2)

Since some vertices inC have edges toOut(v), eachw ∈ Out(v)
have at least one edge from C . Let Bw = {u ∈ C such that (u,w) ∈
E} be the set of vertices inC with edges tow , for allw ∈ Out(v)\C .
Note that, |Bw | ≥ 1, otherwisew would not be covered byC . Now
consider the events E1,E2, ..., E |Bw | such that Ei is the event in
which w is activated by ui ∈ Bw . Once we have defined that all
edges have activation probability p, then Pr(E1) = Pr(E2) = ... =
Pr(E |Bw |) = p. As a result, for each w ∈ Out(v) \C , we have

Pr(Xv,w = 1) = p ≤ Pr(E1 ∪ E2 ∪ ... ∪ E |Bw |) (3)

= Pr(Bw activatew).

To know the number of nodes inOut(v) activated byC , consider
a random variable Yw which is 1 if w is activated by a vertex in C
and 0 otherwise. Thus,

infOut (v)(C) =
∑

w ∈Out (v)\C

Yw .

Again, by the linearity of expectation,

E[infOut (v)(C)] =
∑

w ∈Out (v)\C

E[Yw]

=

∑

w ∈Out (v)\C

Pr(Yw = 1)

=

∑

w ∈Out (v)\C

Pr(Bw activatew)

≥
∑

w ∈Out (v)\C

p

= E[inf(v)],

A Preselection Algorithm for the Influence Maximization Problem in Power Law Graphs SAC 2018, April 9–13, 2018, Pau, France

where the inequality follows from Eq. 3 and the last equality came
from Eq. 2. �

Such results show that the vertices in C have more probabil-
ity of becoming early adopters than most of the vertices in V \ C .
Due to the criteria to choose C , all the vertices that have no out-
neighbors are in V \ C while many of the higher degree vertices
belong to C . Hence, we suppose that the marginal gain of the ver-
tices in V \C is always low and would be discarded in any way. In
view of power law graphs, where most of the vertices have low de-
gree and a small number have high degree, there are two general
aspects of the excluded vertices. First, a large number of nodes has
degree equal to one, many of which has no out-neighbors. Further-
more, some vertices which degrees are greater than one also have
no out-neighbors. Consequently, these nodes would not activate
other vertices. Second, for all v ∈ V \C in which the out degree is
greater than one, v is subject to Lemmas 2.2, 2.3 and Theorem 2.4,
that is, the nodes in C are enough to achieve the Out(v).

It is worthwhile noticing that, based on the number of nodes
without out edges, it is possible to quantify the number of vertices
that cannot activate anyone. But it requires a very thorough anal-
ysis on random power law graphs, and this is not the scope of
this work. Given this, we suppose that we can select the k early
adopters of set S within the set C without losing quality of spread,
then we do not need to consider every vertex of the graph using
the greedy algorithm. Therefore, although the analysis was simpli-
fied, there are strong indications that the results would be positive
in more complex models, with distinct propagation probabilities.

3 THE PREVALENTSEED ALGORITHM

We now present an algorithm that chooses the early adopters in
power law graphs, called PrevalentSeed. We combine the Pres-
elector with the Celf’s “Lazy Forward” update scheme. The idea
is to show how the preselection can be used in a seed set selection
algorithm. Algorithm 3 shows the pseudo code. Initially, we divide
the vertex set into two disjoint subsets, C and V \ C , such that C
is the set of candidates (line 3). Here, we chose to use the Celf

optimization as a sub routine instead of the greedy algorithm of
Kempe et al. [12], since it is faster. Therefore, the code snippet be-
tween lines 4-15 is a modification of Celf, in which the difference
is the loop at lines 4-7, where we inserted in the list Q only the
vertices of set C . From this moment on, the marginal gain of the
vertices inV \C is not estimated anymore. Next, the marginal gain
of each v ∈ C is estimated and v is added toQ in a non increasing
order of marginal gain. The search follows the Celf’s idea, at lines
8-15, to make a greedy search and select the k vertices of higher
marginal gain from the vertices belonging to the set C .

As well as in the Celf algorithm, the element of Q correspond-
ing to v stores a table of the form 〈δv ,v .it〉, where δv = σ (S ∪

{v})−σ (S) is the marginal gain ofv compared to S , andv .it marks
at which iteration the value of δv was last updated. In each of the k
iterations of ‘while’ loop,v is removed from the queue and checked
if the marginal gain already was computed at the current iteration,
using the it attribute. If yes, v is the vertex of the greatest marginal
gain at the current iteration, so it will be selected as a seed (lines
10-11). Otherwise, the lines 12-15 recompute thev’s marginal gain
and insert it again in Q such that the order is maintained.

Algorithm 3: PrevalentSeed

Input:G,k,σ

Output: Seed set S
1 begin

2 S ← ∅,Q ← ∅

3 C ← Preselector(G)

4 foreach u ∈ C do

5 δu ← σ ({u})

6 u .it ← 0

7 Add u to Q in a non increasing order by δu

8 while |S | ≤ k do

9 Dequeue u from Q

10 if u .it = |S | then

11 S ← S ∪ {u}

12 else

13 δu ← σ (S ∪ {u}) − σ (S)

14 u .it ← |S |

15 Enqueue u in Q and sort

Theorem3.1 determines the running time of the PrevalentSeed
and shows that it is asymptotically equal to Celf, even making the
preselection.

Theorem 3.1. LetG be a directed graph with n vertices andm edges.

Algorithm 3 executes in O(knrm) time.

Proof. The PrevalentSeed’s running time is given as follows.
(i) By Theorem 2.1, the call to PreSelector at line 3 usesO(n +m)
steps to find the set C . (ii) In the loop of lines 4-7, O(|C |rm) op-
erations are made. This loop computes the value of σ (v) for all
v ∈ C . The σ (v) is estimated with r = 10.000 simulations of spread
process (Monte Carlo method). Every call to σ (v) spends O(rm)
time. Moreover, each insertion in Q has time O(1). Thus, this loop
needs O(|C |rm) operations. (iii) To choose k nodes O(knrm) steps
are needed at the ’while’ loop. This loop is an adaptation of Celf
optimization in with the difference that the set of vertices V is re-
placed by the set C of candidates. As explained by [14], this algo-
rithm has time O(knrm). Since |C | ≤ n, then we have the same
bound. Therefore, the total running time is the sum of items (i), (ii)
and (iii). O(n +m) +O(|C |rm)+O(knrm) = O(knrm). �

4 EXPERIMENTS

We conducted the experiments in two types of datasets, real social
networks and synthetically generated graphs. The comparisonwas
made between PrevalentSeed and the Celf algorithm by taking
into account two metrics: size of set of vertices achieved by the
spread of influence (ie, quality of seed set) and running time. In
the experiments, the proposed algorithm got significant gains in
performance compared to Celf besides preserving the expected
spread in a competitive level. Although the Celf++ is faster than
Celf in the experiments reported by Goyal et al. [10] we chose
Celf as baseline because in some empirical evaluations the Celf
remains more robust on different types of graph.

SAC 2018, April 9–13, 2018, Pau, France Renato S. Melo and Andre L. Vigna�i

The algorithm was implemented in Java using the JGraphT li-
brary (jgrapht.org) and all experiments were performed on a ma-
chine with GNU/Linux (Linux Mint 17) which hardware configura-
tionswere: (i) Processor: Intel(R) Core(TM) i5-3210MCPU, 2.50GHz,
x86_64 architecture, and 4 CPU’s. (ii) Cache memory: 128KiB L1
cache; 512KiB L2 cache; 3MiB L3 cache. (iii) RAM: 6GiB SODIMM
DDR3 Synchronous 1600 MHz (0,6 ns).

4.1 Real World Power Law Graphs

We seeked networks that exhibited structural features of large scale
social networks and power law degree distribution. Six graphswere
used to exemplify the results. Table 1 summarizes some data about
these graphs.

Table 1: Statistics information of the social networks. The β

values are from Liu et al. [15] and Tang et al. [16] results.

Social Network Vertices Edges Exponent (β)

NetHEPT 15,233 32,213 2.651
NetPHY 37,154 180,826 2.843
Enron 36,692 367,662 2.357
Epinions 75,879 508,837 2.383
Amazon 262,111 1,234,877 2.432
DBLP 654,628 1,990,259 3.361

All the tests were carried out in the independent cascade model.
In order to evaluate graphs relatively large, we splitted the exper-
iments into two categories. The smallest graphs and the largest
ones. Due to the long time required to make Monte Carlo sim-
ulations, we set the propagation probabilities to p = 0.025 on
smaller graphs and p = 0.0025 on larger graphs. It was necessary
because higher probabilities would make the experiments infea-
sible, as far as the running time is concerned. We simulated the
propagation process by 10,000 times for each selected set, as in the
literature [10, 12, 14].

4.1.1 Results and Discussion. The quality of the early adopters
selected by the algorithms was evaluated based on the number of
activated vertices. The higher the spread, the better the quality. In
the graphics of Figure 1 the algorithms have similar results on the
influence propagation, that is, the number of activated vertices are
almost the same. Note that despite the difference of probabilities,
the results are similar and both algorithms have produced good
seed sets. Concerning the running time, Table 2 summarizes the ef-
fectiveness of the PrevalentSeed compared to Celf’s time when
k = 50. For simplicity purposes, we kept only two decimal places of
precision. The last column shows how much PrevalentSeedwas
faster than Celf. In this case, we achieved a reduction up to 57%,
but unfortunately we also got negative results. It is important to
note that the result of the two last graphs on Table 2 was negative
mainly due to a very important fact, which is the size of set C .

In the graphs which the performance of PrevalentSeed was
worse than Celf (Enron and Epinions), the density is higher than
in the other graphs. This feature implies that a smaller number of
vertices are needed to cover all the graph, that is, the size of C de-
creases when the number of edges increases. With few candidates,

Table 2: Difference between the running time of Celf and

PrevalentSeed, for k = 50.

Network PrevalentSeed Celf Gain

NetHEP 220.84 315.61 30.02%
NetPHY 3,195.05 5,366.88 40.46%
Amazon 2,438.71 5,679.99 57,06%
DBLP 5,541.06 10,876.31 49,06%
Enron 212,964.45 192,744.20 -10.49%
Epinions 123,392.18 112,237.96 -9,93%

Table 3: Calls to the σ function in all tested graphs. Columns

4 and 5 shows the total of reorganizations of Q needed to

PrevalentSeed and Celf, respectively.

Graph Calls to σ Reordering of Q

PrevalentSeed Celf PrevalentSeed Celf
NetHEP 4389 15370 125 137
NetPHY 8713 37495 213 341
Amazon 107058 262205 93 94
DBLP 117537 654726 96 98
Enron 3617 36861 194 169
Epinions 13367 76055 195 181

the Celf’s priority queue needs to be reorganized more times. To
reorganize the priority queue, it is necessary to estimate the mar-
ginal gain again, making new calls to the σ function. Since, in this
step, the set S is not empty, such computation should be more time
consuming because the spread tends to be larger when S grows
Thus, each new call to σ can negatively affect the algorithm’s run
time. That is why PrevalentSeed can be worse than Celf.

Table 3 presents howmany reorganizationswere needed to each
graph in both algorithms. It is easy to note that PrevalentSeed be-
haves badly only in the cases where the number of reordering was
greater than in Celf. Even with the notable difference between the
total number of calls of the two algorithms, what really impacts the
running time are the calls required to reorder the queue. Note that
the total of calls is proportional to the number of vertices placed
into the queueQ . As the goal of the preselection optimization is to
reduce this number of vertex, the PrevalentSeedmakes less calls
to σ than Celf at the proportionality of |C |.

Fortunately, even with a worst time in some cases, the quality
of seed set remained competitive (see on Figure 1). Since our pres-
election heuristic aims to solve the problem in power law graphs,
we believe that this is not a prohibitive trouble. Based on these
findings, we recommend that is enough to pay attention to scale
coefficient β . The experiments show that the gain in time reduc-
tion is better when β ≥ 2.4. Thus, when the density of the graph is
higher, it is more appropriate to use only Celf optimization with-
out Preselector.

4.2 Synthetic Graphs

In order to artificially represent realistic social networks, the ran-
dom graph model used in this study is based on the Aiello et al. [1]

A Preselection Algorithm for the Influence Maximization Problem in Power Law Graphs SAC 2018, April 9–13, 2018, Pau, France

0

50

100

150

200

250

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed
CELF

(a) NetPHY

0

10

20

30

40

50

60

70

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed
CELF

(b) NetHEP

0

10

20

30

40

50

60

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed
CELF

(c) Amazon

0

10

20

30

40

50

60

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed
CELF

(d) DBLP

0

20

40

60

80

100

120

140

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed
CELF

(e) Enron

0

20

40

60

80

100

120

140

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed
CELF

(f) Epinions

Figure 1: The simulations in NetHEP, NetPHY and Amazon have propagation probability p = 0.025, and the simulations in

DBLP, Enron and Epinions have p = 0.0025.

model, denoted as P(α , β). The generated networks combine the
topology introduced by P(α , β) model together with the General-
ized Random Graph (GRG) model [19]. The purpose of this method-
ology is to generate power law random graphs with an adjustable
scale exponent β . Roughly speaking, in the GRG model, a graph
starts with a set of n vertices with no edges between them. Each
vertex has a weight which determines the probability of having
edges. The algorithm adds edges between pairs of vertices accord-
ing to its weights. Hence, the graph topology depends on the cho-
sen weights, and it can be handled such that the resulting graph
has an expected degree according to a desired distribution. So, the
P(α , β)model provides a well-defined sequence of weights, used as
the input of the GRG model, that follows a power law distribution.

In our experiments, we generated 60 synthetic graphs. The net-
work generation parameters are size and density, in which we vary
the number of vertices such that n = {2, 4, 8, 16, 32, 64} and the
scale exponent was fixed in β = 2.5. For each n, we perform the ex-
periments on 10 networks, and report the average results to both
expected propagation and running time. In all the experiments,
we preprocessed the graphs by eliminating the isolated nodes and
small components in order to only use the connected graph of the
giant component. The propagation probabilities on the edges are
draw uniformly at random from the interval [0, 14]. Such settings
allow us to perform experiments in feasible time on the IC model
with random probabilities.

4.2.1 Results and Discussion. Weplot the performance of Preva-
lentSeed and Celf in both metrics, expected propagation and

running time. Figure 2 presents the average expected propagation
of the networks with 64 thousand vertices, where the spread of
PrevalentSeed match almost perfectly with the Celf’s spread.
This confirms that our heuristic is able to reach the same quality.
This matches the intuition from the end of the analysis of the pre-
selection process, which says that without losing the quality of
spread, we can select the early adopters within the set C . For the
running time, we see that our algorithm does better than Celf. Fig-
ure 3(a) shows the amount of time required to find a seed set of 50
vertices on the random graphs. The gain in running time for each
of the sizes 2k, 4k, 8k, 16k, 32k and 64k of the graphs are 17.2%,
22.42%, 36.4%, 26.61%, 24.4% and 29.67%, respectively.

Figure 3(b) presents the average number of calls to σ function.
In these settings, the difference between the algorithms is directly
related to the size of the set of candidates. Thus, the preselection
decreases the quantity of influence estimation along the greedy
search. Also, Figure 3(b) shows that even with a noteworthy de-
crease in the number of calls to σ function, the running time (Fig-
ure 3(a)) does not decreases proportionally. Again, the comparison
between the running time and the number of calls to σ reinforce
the idea that the more expensive calls to σ are those performed
to reorder the priority queue, as already reported in the real-word
network evaluations in Section 4.1.

We are aware of new algorithms and heuristics that outperforms
our baseline and the PrevalentSeed into this field, for instance
IMM [17] and TIM+ [18], and by the time the paper is published,
some details of our comparison method will be outdated. Nonethe-
less, our main contribution remains valid because the focus of our

SAC 2018, April 9–13, 2018, Pau, France Renato S. Melo and Andre L. Vigna�i

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed
CELF

Figure 2: Simulations in synthetic graphs with 64 thousand

vertices and propagation probability p ∈ [0, 14]. We plot only

one size of graph due to similar results in all tested sizes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2k 4k 8k 16k 32k 64k

T
im

e
(s

ec
on

ds
)

Graphs

PrevalentSeed
Celf

(a) Running time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

2k 4k 8k 16k 32k 64k

C
al

ls

Graphs

PrevalentSeed
Celf

(b) Calls to σ function

Figure 3: Average running time (a) and number of calls to

the σ function (b) of both algorithms to find 50 seeds on syn-

thetic graphs.

work is presenting a preselectionmethodology specialized in power
law graphs, that can be applied or combined with any greedy al-
gorithm. The purpose, therefore, is not to compete with new al-
gorithms in selecting the seed set, but to offer a way to improve
the performance in power law graphs. The PrevalentSeed algo-
rithm is an example of how the preselection can be applied in a
given seed selection algorithm. For this reason, we kept the origi-
nal Celf as baseline, since our goal is to compare the results with
and without the preselection.

5 CONCLUSIONS

Some interesting features of the preselection are that it explores
the relationship between influence propagation and degree distri-
bution of social networks to highlight the most promising vertices,
preventing unnecessary processing by cutting out some elements
of the search. Experimentally, the PrevalentSeed is reasonably
faster than Celf in most of the evaluated graphs. This happens
mainly due to the reduction of the number of estimation of the in-
fluence function. Moreover, the set of activated nodes chosen by
PrevalentSeed are very competitive with those found by Celf

in terms of quality. In addition, the theoretical analysis concern-
ing the reach of spread produce results that goes according to the
empirical analysis.

REFERENCES
[1] William Aiello, Fan Chung, and Linyuan Lu. 2001. A random graph model for

power law graphs. Experimental Mathematics 10, 1 (2001), 53–66.
[2] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. 2017. Debunking the myths of

influence maximization: An in-depth benchmarking study. In Proceedings of the
2017 ACM International Conference on Management of Data. ACM, 651–666.

[3] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization
for prevalent viral marketing in large-scale social networks. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 1029–1038.

[4] Wei Chen, YajunWang, and Siyu Yang. 2009. Efficient influence maximization in
social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 199–208.

[5] Wei Chen, Yifei Yuan, and Li Zhang. 2010. Scalable influence maximization in
social networks under the linear threshold model. In Data Mining (ICDM), 2010
IEEE 10th International Conference on. IEEE, 88–97.

[6] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law
distributions in empirical data. SIAM review 51, 4 (2009), 661–703.

[7] Pedro Domingos and Matt Richardson. 2001. Mining the network value of cus-
tomers. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 57–66.

[8] David Easley and Jon Kleinberg. 2010. Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge University Press.

[9] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. 2011. A data-based
approach to social influence maximization. Proceedings of the VLDB Endowment
5, 1 (2011), 73–84.

[10] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Celf++: optimizing the
greedy algorithm for influence maximization in social networks. In Proceedings
of the 20th international conference companion on World wide web. ACM, 47–48.

[11] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Simpath: An efficient
algorithm for influence maximization under the linear threshold model. In Data
Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE, 211–220.

[12] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 137–146.

[13] Jon Kleinberg. 2007. Cascadingbehavior in networks: Algorithmic and economic
issues. Algorithmic game theory 24 (2007), 613–632.

[14] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 420–429.

[15] Xiaodong Liu, Shanshan Li, Xiangke Liao, Shaoliang Peng, LeiWang, and Zhiyin
Kong. 2014. Know by a handful the whole sack: efficient sampling for top-k
influential user identification in large graphs. World Wide Web 17, 4 (2014), 627.

[16] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 990–998.

[17] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence maximization in
near-linear time: A martingale approach. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data. ACM, 1539–1554.

[18] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: Near-
optimal time complexity meets practical efficiency. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. ACM, 75–86.

[19] Remco Van Der Hofstad. 2016. Random graphs and complex networks. (2016).

	Abstract
	1 Introduction
	2 Optimization by Preselection
	2.1 Set of Candidates
	2.2 Analysis of the Preselection Process

	3 The PrevalentSeed Algorithm
	4 Experiments
	4.1 Real World Power Law Graphs
	4.2 Synthetic Graphs

	5 Conclusions
	References

